НЕГОСУДАРСТВЕННАЯ АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

«ИНСТИТУТ МИРОВЫХ ЦИВИЛИЗАЦИЙ»

Утверждаю

Ректор НАНО ВО

«ИМЦ»

О.Н. Слоботчиков

31 января 2021 г.

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ДЛЯ ПОСТУПЛЕНИЯ ПО МАТЕМАТИКЕ

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ПИСЬМЕННЫХ ИСПЫТАНИЙ ПО МАТЕМАТИКЕ

Пояснительная записка

Программа регламентирует содержание вступительных испытаний по математике, проводимых в форме письменных экзаменов: контрольные работы, тестирование. Программа отличается большей значительно «школьной» ориентированностью содержания вступительных экзаменов, что концептуальными положениями идеи стандартизации профессионального образования на всех уровнях, вопросами преемственности и непрерывности образования.

Настоящая программа состоит из трех частей. В первой части перечислены основные математические понятия, которыми обязательно должен владеть поступающий. Вторая часть представляет собой перечень вопросов экзамена по математике, составляющих ядро математической подготовки абитуриента. При подготовке к письменному экзамену, прежде всего, следует ознакомиться с формулировками утверждений этого раздела. В третьей части указано, сформированность каких навыков и умений требуется от абитуриента.

Объем знаний и степень владения материалом, описанным программе, соответствует школьному курсу математики. Абитуриент может пользоваться всем арсеналом средств из этого курса, включая и начала анализа. Однако для решения экзаменационных задач достаточно уверенного владения лишь теми понятиями и их свойствами, которые перечислены в настоящей программе в соответствии с требованиями Государственного образовательного стандарта средней школы. Объекты и факты, не изучаемые в общеобразовательной школе, также могут использоваться поступающими, но при условии, что он способен их пояснять и доказывать. В связи с обилием учебников и регулярным их переизданием отдельные утверждения второго раздела могут в некоторых учебниках называться иначе, чем в программе, или формулироваться в виде задач, или вовсе отсутствовать. Такие случаи не освобождают поступающего от необходимости знать эти утверждения и уверенно применять их при решении следующих типовых задач:

Модуль 1: «Выполните действия. Упростите выражение. Избавиться от иррациональности в знаменателе выражения. Указать наибольшее из чисел. При каких значениях параметра выполняется равенство. Доказать тождество. Расположить в порядке возрастания (убывания)».

Модуль 2: «Решить уравнение. Решить систему уравнений. Решить неравенство. Решить систему неравенств. Найти наибольшее (наименьшее) решение уравнения, принадлежащее заданному интервалу. Указать количество корней уравнения (неравенства), принадлежащих данному интервалу».

Модуль 3: «Решить задачу на движение. Решить задачу на работу. Решить задачу на проценты. Решить задачу на целые числа и прогрессии. Найти вероятность».

Модуль 4: «Вычисление элементов планиметрических и стереометрических фигур, нахождение объемов и площадей фигур».

1. Основные математические понятия.

Арифметика, алгебра и начала анализа.

Признаки делимости на 2, 3, 5, 9, 10. Свойства числовых неравенств. Формулы сокращенного умножения. Свойства линейной функции и ее график. Формула корней квадратного уравнения. Теорема о разложении квадратного трехчлена на линейные множители. Теорема Виета. Свойства квадратичной функции и ее график. Неравенство, связывающее среднее арифметическое и среднее геометрическое двух чисел. Неравенство для суммы двух взаимно обратных чисел. Формулы общего члена и суммы п первых чисел членов арифметической прогрессии. Формулы общего члена и суммы п первых чисел членов геометрической прогрессии. Вероятность событий.

Свойства степеней с натуральными и целыми показателями. Свойства арифметических корней п-ой степени. Свойства степеней с рациональными показателями. Свойства степенной функции с целым показателем и ее график. Свойства показательной функции и ее график. Основное логарифмическое тождество. Логарифмы произведения, степени, частного. Формула перехода к новому основанию. Свойства логарифмической функции и ее график.

тригонометрическое Основное тождество. Соотношения между тригонометрическими функциями одного и того же аргумента. Формулы приведения, сложения, двойного и половинного аргумента, суммы и разности тригонометрических функций. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование произведения синусов и косинусов в сумму. Преобразование выражения $a\sin x + b\cos x$ с помощью вспомогательного аргумента. Формулы решений простейших тригонометрических уравнений. Свойства тригонометрических функций и их графики.

Производная функции. Правила и формулы вычисления производных функций. Экстремум функции. Алгоритм исследования функции на условный и безусловный экстремум. Первообразная функции. Определенный и неопределенный интеграл и его свойства. Техника вычисления площадей плоских фигур.

Геометрия.

Теорема о параллельных прямых на плоскости. Свойства вертикальных и смежных углов. Свойства равнобедренного треугольника. Признаки равенства треугольников. Теорема о сумме внутренних углов треугольника. Теорема о внешнем угле треугольника. Свойства средней линии треугольника. Теорема Фалеса.

Признаки подобия треугольников. Признаки равенства и подобия прямоугольных треугольников. Пропорциональность отрезков в прямоугольном треугольнике. Свойства серединного перпендикуляра к отрезку. Свойства биссектрисы угла. Теоремы о пересечении медиан, пересечении биссектрис и пересечении высот треугольника. Свойство отрезков, на которые биссектриса треугольника делит противоположную сторону.

Свойство касательной к окружности. Равенство касательных, проведенных из одной точки окружности. Теоремы о вписанных углах. Теорема об угле, образованном касательной и хордой. Теоремы об угле между двумя пересекающимися хордами и об угле между двумя секущими, выходящими из одной точки. Равенство произведений отрезков двух пересекающихся хорд. Равенство квадрата касательной произведению секущей на ее внешнюю часть. Свойство четырехугольника, вписанного в окружность. Свойство четырехугольника, описанного около окружности. Теорема об окружности, вписанной в треугольник. Теорема об окружности, описанной около треугольника.

Теорема Пифагора. Теоремы синусов и косинусов для треугольника. Теорема о сумме внутренних углов выпуклого многоугольника. Признаки параллелограмма. Свойства параллелограмма. Свойства средней линии трапеции. Формула для вычисления расстояния между двумя точками на координатной плоскости. Уравнение окружности.

Теоремы параллельных пространстве. прямых В Признак параллельности прямой и плоскости. Признак параллельности плоскостей. Признак перпендикулярности прямой и плоскости. Теорема об общем перпендикуляре К двум скрещивающимся прямым. Признак перпендикулярности плоскостей. Теорема о трех перпендикулярах. Формулы объемов и площадей фигур, площадей поверхностей.

2. Перечень вопросов, составляющих ядро математической подготовки абитуриента.

- 1. Свойства функции y=ax+b и ее график.
- 2. Свойства функции *y=k/x* и ее график.
- 3. Свойства функции $y=ax^2+bx+c$ и ее график.
- 4. Формула корней квадратного уравнения.
- 5. Разложение квадратного трехчлена на линейные множители.
- 6. Свойства числовых неравенств.

- 7. Логарифм произведения, степени, частного.
- 8. Определения и свойства функций $y = \cos x$ и $y = \sin x$ и их графики.
- 9. Определения и свойства функций *y*=tg*x* и *y*=ctg*x* и их графики.
- 10. Решение уравнений вида $\sin x = a$ и $\cos x = a$.
- 11. Решение уравнений вида tgx = a и ctgx = a.
- 12. Формулы приведения.
- 13. Зависимость между тригонометрическими функциями одного и того же аргумента.
- 14. Тригонометрические функции двойного аргумента.
- 15. Тригонометрические функции половинного аргумента.
- 16. Формулы суммы и разности тригонометрических функций.
- 17. Производная суммы, произведения и частного функций.
- 18. Свойства неопределенного интеграла.
- 19. Формула Ньютона-Лейбница.
- 20. Свойства равнобедренного треугольника.
- 21. Свойства точек, равноудаленных от концов отрезка.
- 22. Признаки параллельности прямых.
- 23. Сумма углов треугольника. Сумма внутренних углов выпуклого многоугольника.
- 24. Признаки параллелограмма.
- 25.Окружность, описанная около треугольника.
- 26. Окружность, вписанная в треугольник.
- 27. Касательная к окружности и ее свойства.
- 28. Измерение угла, вписанного в окружность.
- 29. Признаки равенства треугольников.
- 30. Признаки подобия треугольников.
- 31. Теорема Пифагора и следствие из нее
- 32. Формулы площадей параллелограмма, треугольника, трапеции.
- 33. Формула расстояния между двумя точками плоскости. Уравнение окружности.
- 34. Признаки параллельности прямой и плоскости.
- 35. Признаки параллельности плоскостей.
- 36. Признак перпендикулярности прямой и плоскости.
- 37. Признак перпендикулярности плоскостей.
- 38. Теорема о трех перпендикулярах.
- 39. Объем цилиндра, конуса, шара.
- 40. Длина и площадь окружности.
- 41. Площадь поверхности шара, конуса, цилиндра.

3. На экзамене по математике абитуриент должен показать:

- 1) четкое знание математических определений и теорем предусмотренных программой, умение доказывать эти теоремы;
- 2) умение четко и сжато выражать математическую мысль в устном и письменном изложении, используя соответствующую символику;
- 3) уверенное владение математическими знаниями и навыками, предусмотренными программой, умение применять их при решении задач.

Экзаменующийся должен уметь:

- 1) производить арифметические действия над числами, заданными в виде десятичных и обыкновенных дробей, с требуемой точностью округлять данные числа и результаты вычислений;
- 2) производить тождественные преобразования многочленов, дробей, содержащих переменные, выражений, содержащих степенные, показательные, логарифмические и тригонометрические функции;
- 3) строить графики линейной, квадратичной, степенной, показательной, логарифмической и тригонометрических функций;
- 4) решать уравнения и неравенства первой и второй степени, уравнения и неравенства, приводящиеся к ним; сюда относятся, в частности, простейшие уравнения и неравенства, содержащие степенные, показательные, логарифмические функции; решать системы уравнений и неравенств;
- 5) решать задачи на составление уравнений и систем уравнений;
- 6) вычислять производные и интегралы от табличных функций;
- 7) изображать геометрические фигуры на чертеже и производить простейшие построения на плоскости;
- 8) использовать геометрические представления при решении алгебраических задач, а методы алгебры и тригонометрии при решении геометрических задач;
- 9) производить на плоскости операции над векторами (сложение и вычитание векторов, умножение вектора на число, скалярное произведение векторов) и использовать свойства этих операций;
- 10) пользоваться понятием производной при исследовании функции на возрастание (убывание), на экстремумы, при построении графиков функций.